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By considering the evolution of a localized voidage disturbance imposed on an 
otherwise uniformly fluidized bed we are able to determine the dominant effects of 
the many terms in the continuum equations of motion governing a fluidized bed. For 
small perturbations a linearized theory is developed, showing that the stability of 
the uniform state is critically dependent upon the particle-phase collisional pressure 
and the flow rate of the uniform state, while the effect of particle phase viscosity is 
shown to be purely dispersive. When the uniform state is stable, the disturbance is 
shown to develop into a decaying pulse followed by a decaying wavetrain. 

For finite-amplitude disturbance, nonlinear effects are considered. These are shown 
to give rise to  the propagation of high voidage gradients through the bed. Having 
established that such voidage fronts will develop, a detailed study of their structure 
is made. This gives strong indications that, for flow rates a t  which the uniform state 
is unstable, the bed will restabiiize into a quasisteady periodic state. 

1. Introduction 
Fluidization is a process in which a bed of solid particles, whose diameters range 

typically from 1 mm down to lop2 mm, is subject to a vertical, upward flow of fluid. 
On increasing the fluid flow speed, a point is reached where the upward drag exerted 
by the fluid balances the downward gravitational force on the particles, which then 
become buoyant. At this point the bed is fluidized a t  minimum fluidizing velocity, 
exhibiting large-scale phenomena, such as buoyancy and surface waves, similar to 
those of a liquid. Because of the large surface area of contact between the two phases, 
the fluidized bed has found many industrial applications, for example in catalytic 
reactions, mixing and coating processes and the combustion of low-grade coals. In  
the majority of applications, fluidized beds are efficient only when the fluidization 
is homogeneous, i.e. when the voidage (the volume of fluid per unit volume of the 
two-phase medium) is uniform ; however, i t  has been found that this situation is not 
always attainable, especially with gas-fluidized beds. Experimental work with 
gas-fluidized beds has shown that on increasing the flow rate above that of minimum 
fluidization the bed will expand uniformly, the voidage increasing uniformly, until 
a further critical flow rate is reached, after which the bed no longer expands 
uniformly, but develops voidage non-uniformities known as ' bubbles ' or ' slugs '. 
Bubbling occurs in beds whose diameters are large compared with their height and 
is characterized by approximately spherical high-voidage regions propagating 
upwards through the bed, while slugging is found in narrow-diameter beds and is 
characterized by horizontal bands of high voidage propagating upwards through the 
bed by rapid particle raining from the sharp voidage fronts. Further details of the 
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behaviour of fluidized beds with increasing flow rates are given by Zenz (1971) and 
Richardson (1971). 

Since bubbling and slugging are often undesirable for efficient operation, many 
theoretical studies have been aimed at describing and understanding the mechanisms 
invoived in the development of such phenomena. The fundamental equations of 
motion governing a fluidized bed have been derived by considering the fluid and 
particle phases as interpenetrating continua ; with detailed derivations being given 
by Anderson & Jackson (1967), Murray (1965), Garg & Pritchett (1975), and Homsy, 
El-Kaissey & Didwania (1980). The continuum equations of motion have been used 
by the above authors to study the linearized hydrodynamic stability of the uniformly 
fluidized state. These studies have been able to show primarily that gas-fluidized beds 
are in general more unstable than liquid-fluidized beds, but owing to the complexity 
of the resulting dispersion relation the mechanism of instability and the relative 
importance of the many terms in the equations of motion have not been revealed. 
A more recent study of the nonlinear effects has been given by Fanucci, Ness & Yen 
(1979), who, on neglecting particle-phase viscosity, reduced the equations of motion 
to a hyperbolic system which was then integrated numerically. Although their work 
did show the possibility of voidage discontinuities arising from continuous initial 
disturbances, it was limited to a sinusoidal initial disturbance and was unable to 
elucidate the fundamental mechanisms involved in the formation of such fronts. In 
fact, Murray (1965) neglected particle collisional pressure as being unimportant and 
predicted all gas-fluidized beds to be unstable at all flow rates, which would contradict 
experimental observation ; while in this paper we demonstrate that particle collisional 
pressure has a strong stabilizing influence on the uniformly fluidized state. This has 
also been reported in the numerical study by Garg & Pritchett. Even when the 
particle collisional pressure is not sufficiently strong to stabilize the uniform state 
completely, it must still be included in a discussion of fluidization to give the flow 
the possibility of reaching a new, quasisteady equilibrium state, as it is one of the 
main dissipative mechanisms in the system curbing the unbounded growth of voidage 
perturbations. 

In  this paper we consider a simple initial-value problem in detail. This enables us 
to identify the mechanisms of fundamental importance in a fluidized bed in a rational 
manner. To simplify, attention is restricted to gas-fluidized beds in which pf/ps 4 1 
(where pf is the fluid density and ps is the solid density) and we consider only 
one-dimensional vertical flow ; physically this corresponds to flow in a narrow-diameter 
fluidized bed. The evolution of a localized voidage disturbance in an otherwise 
uniformly fluidized bed is examined. For small perturbations a linear theory is 
developed which highlights the stabilizing effect of particle collisional pressure upon 
the uniform state. The resulting stability criterion is dependent both upon the effect 
of particle collisional pressure and the flow rate of the uniform state, and gives 
encouraging qualitative agreement with experimental observations reported by Zenz 
& Othmer (1960) on the behaviour of narrow-diameter gas-fluidized beds with 
increasing flow rates. For finite-amplitude disturbances, nonlinear effects are im- 
portant. These give rise to the formation and propagation of high voidage gradients, 
and the growth of the instabilities of the linearized theory are shown to be curbed 
by the changing sign of a nonlinear diffusion coefficient. Since the propagation of high 
voidage gradients is recognized as playing an important role in the phenomena of 
slugging and bubbling, and, having determined that such fronts can develop, in the 
final part of the paper we isolate such fronts and examine their structure in some 
detail. This gives an indication that the bed may restabilize into a quasisteady 
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periodic state a t  flow rates for which the uniform state is unstable to small-amplitude 
disturbances. 

2. Equations of motion 
We are concerned with the one-dimensional (vertical) flow in fluidized beds in which 

p f  < p s ,  where p f  is the fluid density and ps is the solid density. When terms of order 
p f / p s  are neglected, the equations of motion governing a fluidized bed are 

i3E a 
-+-(EU) = 0,  
at ax 

aE a 
- - + + [ ( l - E )  V ] = O ,  

at ax 

(3) p.(l-E)[;jt-+ av V-] av = B(E)  ( U -  V ) - ( 1 - E ) p , g - - + p s - ,  ap, a v  
ax ax a x 2  

ap 
- ax = -B(E) ( U -  V ) .  (4) 

Here x is the coordinate measuring distance vertically upwards, t is time, U is fluid 
velocity, V is particle velocity, E is voidage (volume of fluid per unit volume of the 
two-phase system), P is fluid-phase pressure, P,(E) is particle-phase pressure, B(E)  
is the drag coefficient per unit bed volume andps is the viscosity of the particle phase. 
Equations ( 1 )  and ( 2 )  are continuity equations for the fluid and particle phases 
respectively. Equation ( 3 )  comes from a momentum balance in the particle phase. 
The first term on the right-hand side represents the drag on the particles exerted by 
the fluid; the second term is the gravitational force on the particles, the third term 
represents interparticle pressure (generated by collisions in the particle phase) ; the 
final term represents viscosity effects in the particie phase. Equation (4) comes from 
a momentum balance in the fluid phase (fluid inertia and viscosity being neglected 
since we are considering gas-fluidized beds, for which pf/ps < 1 ) .  This last equation 
serves only to determine P (23, V and U being first determined by solution of (1)-(3)) ,  
and can henceforth be removed from the discussion. 

To close the set of equations (1)-(3) it remains to relate the drag coefficient per 
unit volume B(E) and the particle-phase pressure P,(E) to voidage. B(E) may be 
written as B(E) = ( 1  - E )  D(E) /  V, E,  where V, is the volume of one particle and D(E)  
is now the drag coefficient for one particle, and, following Murray (1965), is a 
decreasing function of voidage E,  with functional form 

D(E)  = DoE-(n-l) .  ( 5 )  

Do is the Stokes drag on a single particle and n > 1 (n is not necessarily an integer). 
This form is chosen to satisfy the condition D ( E )  +Do as E-t 1, and is suggested by 
the uniform-bed expansion correlation given by Richardson (1971), which for 
gas-fluidized beds suggests a value of n z 3.  All the work available at present (e.g. 
Saffman 1973) on the calculation of D ( E )  is confined to the case of very high voidage, 
which limit is not really applicable to the study of fluidized beds. Consequently, to 
fix the functional form of D(E)  over a wide range of values of E ,  reliance has to be 
placed on correlations of experimentally determined results. 

Drew & Segal (1971) suggest that the collisional pressure in the particle phase P, 
is a decreasing function of voidage. In  view of the little experimental evidence 
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available relating interparticle pressure to voidage, we take, as a first approximation, 
the simple linear form which reduces to zero as E +  1 ,  namely 

P,(E) = PO(1 -EL (6) 

where Po is a constant, having dimensions of pressure, and is of the order of 
10 dyn/cm2 to be consistent with values used by Anderson & Jackson (1968). 

A state of fluidization is essentially a balance between the upward drag on the 
particle phase, induced by the vertical flow of fluid through the bed, and the 
downward gravitational force acting on the particle phase. The drag, and hence the 
drag coefficient, is therefore expected to play an important role in determining the 
behaviour within a fluidized bed. The effect of collisional pressure in the particle phase 
is also shown in this paper to play a vital role in stabilizing a fluidized bed. Although, 
to close the equations of motion, functional forms for the dependence of the drag 
coefficient and collisional pressure are needed, and specific forms have been proposed 
in ( 5 )  and (6), it is expected that the behaviour will not be affected, qualitatively at 
least, for alternative functional forms, provided the overall trend of monotonic 
decrease with increasing voidage and the appropriate limits as E+ 1 are satisfied. 

A further simplification can be made by adding ( 1 )  and (2) and integrating with 
respect to x .  This yields the equation 

EU+ ( 1  - E )  v = M(t ) .  (7)  

M ( t )  is a function only of time. Equation (7 )  then is used to replace (1).  It should 
be noted that the left hand side of (7)  is the total volumetric flow per unit cross-sectional 
area, and, in accordance with the incompressibility of the whole system, (7)  shows 
that the volume flow is independent of x .  

The simplest solution to (7 ) ,  (2) and (3) is one that represents a state of uniform 
fluidization (or homogeneous fluidization), in which the particle phase velocity is 
everywhere zero, the fluid-phase velocity is a constant Uo and the voidage is a 
constant 8,. Substitution into (2), (3) and (7)  yields the compatibility relations 

For a given volume flow M,, (8) and (9) determine U, and 6,. Using ( 5 ) ,  (9) can 

(10) 
be written in the explicit form 

where U, is, under the assumption pf/ps 6 1 ,  the terminal free-fall velocity of a single 
particle in the stationary fluid. Equation (10) is Richardson's correlation for the 
expansion of uniformly fluidized beds. 

In this paper we discuss the evolution of a localized voidage disturbance imposed 
on the uniform state at t = 0. A typical velocity scale is U, and lengthscale h, the 
spread of the initial disturbance. Using U, and h, non-dimensional quantities are 
introduced as follows : 

u, = utg, 

Substituting into ( 2 ) ,  (3) and (7) ,  and dropping bars for convenience, the equations 
in dimensionless form become 

E U + ( l - E )  V =  M ,  (11)  
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a~ a 
at ax --+-[(l-E) v] = 0, 

1-E  ap,aE i a v  
+-7. ax F a ~ a ~   ax 

av a 
( I - E ) [ ~ +  vq = B(E) (u- I+---- 

Here F = @/gh is the Froude number and R = ps U,h/& is the particle-phase 
Reynolds number. Using (5) and (6) we have B ( E )  = [ ( i - E ) / f l ( ~ ~ / E ) ~  and 
E ( E )  = e(1 -E),  where 6 = (P,/p, Ui). 

We consider the one-dimensional motion in an infinite fluidized region, which for 
t < 0 is assumed uniformly fluidized (i.e. U = 1, V = 0, E = E , ) .  At t = 0 a localized 
voidage disturbance is made upon the uniform state, with amplitude a. The initial 

(14) 
conditions are 

V(z,O) = 0, (151 

E(z,O) = € o + a g ( X ) ,  

together with the conditions U +  1, Y + O ,  E-te, far away from the disturbance, 
which determine M as a constant, M,,  where M ,  = c0. For a typical gas-fluidized bed, 
experimental results given by Richardson (1971) show that certainly for particles 
with diameters of the order of lop2 mm Qj 4 gh for all lengthscales h covered by the 
continuum theory. However, for mineral particles with diameters in the upper range, 
of the order of 1 mm, the fluidizing velocity can be of the order of 20 cm/s. The value 
of h for which the assumption VZ, 4 gh is justified is then somewhat larger, the theory 
then approaching a long-wave theory. Throughout the rest of the paper we therefore 
assume F 4 1, while the particle-phase Reynolds number R is typically O(1). We 
consider first the linearized problem when la1 4 1 .  

3. The linearized problem la1 4 1 

When (a( 6 1, we look for a solution of (1  1 )-( 13) in the form 

I E ( z ,  t )  = E ,  + aE(x ,  t ) ,  

V (x ,  t )  = a q x ,  t ) ,  

U(x, t )  = 1 +aU(x ,  t ) .  

When (16) is substituted into (11)-(13), and terms of O(a2) are neglected, we - -  obtain 
a - set of linear partial differential equations for the perturbed quantities E ,  V and 
U ;  namely 

e,U+E+(l--Eo) v =  0, (17) 

where the constants are 

The initial and boundary conditions become 
_ - _  

E(x ,  0 )  = g(x),  v(z, 0) = 0, E ,  V ,  U-tO far away from the disturbance. (20) 
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To obtain a single equation for the voidage perturbation E ,  (17) is first used to 
eliminate 0 from (19). The resulting equation is then differentiated with respect to 
x, and on using (18) to eliminate v, the equation becomes 

- 

a2E aE aE -azE a3E 
at2 ax at a x 2  ax2at '  

F - =  - A - - B - + F & - + F C -  

where A ,  B and C are positive constants given by 

To solve (21), we require a further condition on Eat t = 0. This is provided by (18) 
as 

= 0. (22) 

Since F 6 1 it  is natural to look for a solution of (21) by expanding E(x, t)  in powers 
of F :  

E(x,t) = ~ o ( x , t ) + E l ( ~ , t ) ~ + E 2 ( x , t ) ~ + ~ ( ~ 3 ) .  (23 ) 

A problem arises immediately. The equation for E0 is 

aEo A ~ E  -+-d = 0 
at B ax 

Clearly the solution of (24) can be made to satisfy only one of the two initial 
conditions. This difficulty arises because of the neglect of the term FazE/at2. To 
overcome this difficulty we solve in two regions: an outer region, where t = O ( l ) ,  and 
an inner region where t = O ( F )  and the second-order time derivative is retained a t  
leading order. Defining inner variables 

i= tF-l ,  E G  EI(x,i), (25) 

and substituting into (21), leads to the inner equation 

and now it is possible to impose both initial conditions EI(x,O) = g(x) and 
a~I/ailt;, = 0. A solution of (26) is sought in the form 

EI(x',i) = E o ( ~ , i ) + ~ l ( x , i )  F + E ~ ( X , ; ) F ~ + O ( P ) .  (27 1 
Substitution of (27) into (26) leads to a hierarchy of equations, which can be solved 
in turn. This yields the inner solution as 

EI ( X, i) = g (x) + [ ( 1 - e-Bt) - 6 g ' (x) i] F + 0 (P) , 
B2 B 

where primes denote differentiation with respect to x. Using the inner solution (28) 
and applying the matching principle, we find that the first two terms of the outer 
expansion, (23), must satisfy 

(29) 
A Eo(x, 0) = g(x) ,  E1(X, 0 )  = - '(x). Bzg 

Also we notice that since (24) has the general solution Eo(x- ( A / @  t) i t  is convenient 
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to introduce a new variable z = x- (AIB)  t. I n  terms of z and t ,  (21) becomes 

A solution of (30) is sought in the form 

E ( z , t )  = Eo(z,t)+El(z,t)F+E2(z,t)F2+O(F3). (31) 

Substitution of (31) into (30) leads to a hierarchy of equations for E0, El,. . . to be 
solved, subject to the conditions (29). We find that 

An examination of (32) shows that the expansion is not uniformly valid as t 00, 
because of the appearance of secular terms in the expansion. These will no longer be 
small corrections to the leading-order term when t = O(F-’). To remove this 
non-uniformity and examine the behaviour when t = O(F-’), we introduce a new 
‘independent’, slow time variable 7 = Ft,  and assume E = E(z, t ,  7). The method of 
multiple scales is now used (Nayfeh 1973). Introducing the slow time variable into 
(30) leads to 

A C a 3 E  a3E a3E --+C- 
B a23 azzat+FC- az2aT 

A solution of (33) is again sought in the form of the expansion (31), except that now 
the Ei 3 Ei(z, t ,  7). Substituting into (33) and equating powers of F ,  we find that, to 
remove secular terms from the O ( F )  correction, the leading-order term must satisfy 

together with the first of the initial conditions (29). 
It is now clear from (34) that  the source of possible instability comes from a 

‘concentrating’ of voidage due to a negative diffusion coefficient. The coefficient of 
the diffusion term, e- A 2 / B 2 ,  is dependent upon the particle collisional pressure, 
through 6, and the uniform voidage eo (and hence the volume flow a t  uniform 
fluidization). The importance of the inclusion of particle-phase collisional pressure is 
now obvious. Neglect of this effect (i.e. putting = 0)  will always lead to the 
prediction of unstable (to small-amplitude disturbances) uniform states at all flow 
rates (cf. e.g. Murray 1965). However, i t  is observed experimentally in the fluidization 
of small particles (of diameters less than about 0.1 mm), where the interparticle 
collisional pressure is relatively large, that  there is a range of flow rates over which 
gas-fluidized beds behave uniformly, and can be expanded uniformly with increasing 
flow rate, as, for example, in results reported by Richardson (1971). Therefore (34) 
emphasizes that particle-phase collisional pressure is not a negligible effect, and must 
be included in any attempt to construct predictive models of a fluidized bed. We can 
also infer immediately from (34) that  since the effect of particle-phase viscosity 
appears only in the final term it gives rise just to dispersive effects, and that dispersion 
and diffusion (positive or negative) take place over a timescale 0(1/F). 



434 D. J .  Needham and J .  H .  Merkin 

The dispersion relation for (34)  is found by substituting En = A(k)eikx-iOT, which 
gives AC (- tBe) B2 

w ( k )  = -i Po-- k 2 - - k 3 .  (35) 

Then by Fourier's theorem, and applying the condition (29) ,  the uniformly valid outer 
solution, to leading order, is given by 

Clearly the integral in (36) is unbounded in the unstable case < A 2 / B 2 .  In  the stable 
case when 2 A2/B2,  i t  may be evaluated asymptotically as 7+ co using the method 
of steepest descents. Introducing new constants a, = AC/B2 and a2 = (z- A 2 / B 2 ) / B  
and putting Z = z + (a;/3ul) 7 we find that, as 7 +  co, with Z/7 held constant, the 
asymptotic behaviour of (36)  is given by 

where is the Fourier transform of g(x), and U ,  = { (1 /3a , )  (Z/7 + 4/3a1))4 ,  
U ,  = i{( 1/3a,) l z " / ~  + ay3a11)4. The asymptotic behaviour (37)  shows the initial 
disturbance develops into a decaying pulse, centred a t  z" z 0, followed by a decaying 
wavetrain. 

It is now straightforward to obtain the appropriate inner and outer expansions for 
the perturbed fluid and solid velocities u a n d  Vrespeetively, from (17) and (18). We 
find that the inner solutions are 

These show that particle- and fluid-phase velocities adjust rapidly from their initial 
values on a timescale O ( F ) ;  (38)  shows the rapid adjustment of the particle velocity 
from the initial value of zero, as the particles begin to fall through the higher-voidage 
region created a t  t = 0. This is the mechanism by which the higher-voidage region 
propagates through the bed. The outer solutions are 

~ C i k ~ 7  ( E - A  / B2 ) k 2 7 ] d k + O ( F ) ,  (39b) 
B 

xexp ikz+-- { B2 

which, as with (36), can be evaluated asymptotically as 7+co for the stable case 
6 2 A z / B 2 .  

It is possible to derive (34) using a less formal technique than that outlined above. 
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Equation (21)  gives to leading order the relationship 

a - ~ a  
at B ax. 
- -- 

Making this replacement for all time derivatives, except that of leading order, in (21) ,  
we obtain the following equation governing voidage variations : 

which is exactly (34) ,  when written in terms of z and 7 .  We illustrate this technique 
here, as a similar procedure will subsequently be used to derive the equation 
governing the nonlinear behaviour of voidage. 

4 gh) by the full 
solution of the initial-value problem is, in fact, valid for all values of F, not necessarily 
small. We look for exponential solutions of (21) in the form 

Finally, we show the stability condition derived for F 4 1 (i.e. 

- 

E,(x, t )  = &k) eikz-qt. (41) 

The substitution of (41) into (21) leads to the algebraic equation 

Writing q ( k )  = g(k)+iq(k) and equating real and imaginary parts yields the two 
equations for 5 and q : 

(43a)  257 + bq + Ci = 0, 

t2+b[+Cr-q2 = 0, (43 b )  

where b = - ( B +  Fk2/R)/F < 0; C, = 8 k z  2 0;  Ci = Ak/F.  Elimination between 
(43a)  and (43b) leads to one fourth-order polynomial with real coefficients for E(k), 
namely 

Pn(6) = ( t 2 + b [ + C r )  (2E+b)2-Ci = 0. 

The uniform state will be stable provided that g(k )  > 0 for all k. Examination of the 
turning points of Pn(5) shows them all to be at  points E i ,  where & > 0. Now if El is 
the smallest of these, then, since El > 0 and Pn(g)+co as (+-a, Pn(5) is a 
monotonically decreasing function of 5 for - co < E < El, and hence for - 00 < 6 < 0. 
So a necessary and sufficient condition that all the real roots (there are two) of Pn 
are positive is Pn(0) > 0. This yields the inequality 8 > A 2 / ( B +  Fk2/R)2, and, since 
this must hold for all k,  we get the stability condition 8 > A2/B2,  previously derived. 

We now examine the stability criterion in more detail. Using the expressions for 
A and B we have shown that the uniform state is stable provided that 
8 > { ( n + l )  ( l - e o ) } z .  Now = P O ( € , )  = +/p,e;"Ut, so, if we define 8 by 
8 = e : n E  = P,/p,  Q, then 8 is a function only of the material properties of the solid 
particles. In terms of 8, the stability criterion becomes 

(44) 

The right-hand side of (44) has just the two roots at  eo = 0 and E, = 1 ,  and for 
0 < e, < 1 ,  has just one turning point, namely a local maximum at c0 = n(n+2)-'. 
If 8 > { ( n  + 1) e;( 1 - eo)}k,, then the uniform state is stable a t  all flow rates M, ( = E , ) ,  

0 < M, < 1. Very few gas-fluidized beds expand uniformly over the whole range of 
flow rates before transport, although it has been reported that this can happen when 
the particle phase has consisted of very fine powder. It is much more likely that 

8 > { ( n +  l ) e : ( l  -eO)I2. 
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1 -  1 -  4 Stable Unstable _I_ Stable 

FIQURE 1. The stability condition for the uniform state with voidage q,. 

8 < { ( n +  l )s t ( l  -sO)}tax.  In this case the equation P o - { ( , +  1)  st(1 -so)}2 = 0 has 
two roots for 0 < E ,  < 1 ,  which we call s t  and sk, where E: > sk. Thus, if the flow rate 
of the uniform state is such that so < sk or so > s:, then it is stable to small-amplitude 
disturbances; otherwise it is unstable. For a given bed (i.e. 8 and n fixed) a qualitative 
sketch of the stability condition (44) is illustrated in figure 1. The qualitative form 
compares well with experimental results for the behaviour of narrow-diameter 
gas-fluidized beds with increasing flow rates, reported by Zenz & Othmer (1960). 

The propagation speed of the disturbance can now be determined. The ‘naive ’ outer 
expansion (32) immediately shows the propagation speed to be C, = A / B  = 
(n+l) (1-so). But we notice that C, was non-dimensionalized with respect to 
U,  = s t  U,, which is a function of so itself. To remove this dependence, we introduce 
Go = Cos t ,  which is again a function of the material properties of the bed alone. 
The propagation speed is now given by 

(45) 

which is valid when t is O(1). If we now define the propagation speed to be the rate 
of change of the position separating the exponential and oscillatory behaviour given 
by the uniformly valid outer expansion (37), the asymptotic propagation speed, as 

Co = (n+  1)  s t ( 1  -so), 

t + 00, is given by 

It should be noticed that (46) is essentially a corrected form of (45). 

4. Numerical solution of the linearized problem 
Solutions have been found in $3 to the linearized equations of motion for small 

Froude number. These solutions describe the propagation and evolution of a 
small-amplitude voidage disturbance through an otherwise uniformly fluidized bed. 
The evolution is shown to take place over three timescales. When t is O(F)  there is 
rapid adjustment in the amplitudes of the initial disturbances, which then propagate 
vertically upwards through the bed on a timescale O( l),  with dispersion and diffusion 
or ‘instability’ being felt on a timescale O(F-’).  If > A2/B2,  then diffusion prevails, 
and asymptotic expansions, found as t + 00, show the disturbance to evolve into a 
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pulse followed by a wavetrain, the amplitudes decaying to zero as t + co. On the other 
hand, if 6 < A 2 / B 2 ,  we have instability, with the amplitude of each wave component 
growing like exp (k2F(A2/B2 - 8) t ) .  This leads to the breakdown of the linearized 
theory, and hence of the validity of the linearized solution, on a timescale of O(F-l) .  

To confirm the solutions obtained for small F ,  and compare the behaviour as F 
is increased to O(I) ,  the linearized equations (21) ,  (17) and (18)  will be solved 
numerically subject to initial and boundary conditions (20). Equation ( 2 1 )  for E is 
solved using an implicit Crank-Nicolson finite-difference scheme, v i s  then calculated 
from (18) via integration using the trapezium rule. It is then straightforward to 
determine r f r o m  the algebraic equation (17). For the numerical solution, the form 
of the initial disturbance g ( x )  was taken to be exp(-x2). Step lengths 0.05 in the 
x-direction and 0.01 in the time direction were used throughout, with the boundary 
condition a t  x + k  co applied at  x = k40. 

To fix things, a typical case F = 0.005, E ,  = 0.4, R = 1 .O was chosen, and solutions 
have been calculated for this typical case and for varying F ,  E ,  and R about this. 
Four cases are shown graphically in figures 2(a-e), where graphs of E a r e  plotted 
against x for varying times. Qualitative agreement with the analytical solution is 
clear. In all of the cases computed, propagation, dispersion and diffusion or instability 
are apparent, and take effect on the timescales confirmed by the analytical solutions. 
The numerical results also confirm that the propagation speed is affected to leading 
order only by changes in E , ;  changes in R and introduce only small corrections. 
Numerically, we find the propagation speed decreases with increasing F ,  decreases 
with increasing E ,  (when scaled with U,) and increases with increasing R. We also 
notice that for a given, stable, flow rate with corresponding uniform voidage E,, 

diffusion becomes greater with increasing F ,  and dispersion more apparent with 
decreasing R.  

5. The nonlinear problem 
The linearized theory examined the evolution of small-amplitude disturbances in 

voidage made to an initially uniformly fluidized state. It was found that, depending 
upon the flow rate, and hence the voidage E, ,  of the uniform state, the amplitude of 
the disturbance would either decay or grow exponentially on a timescale O(F-'). 
Although the linearized theory has enabled us to predict the flow rates a t  which the 
uniform state can exist (i.e. is stable) under small-amplitude disturbances, and maybe 
even tentatively suggest, by comparison with experimental results of Zenz & Othmer 
(1960), that when the flow rate is such that the uniform state is unstable slugging 
may develop, to study such phenomena further nonlinear effects must be considered. 

To study nonlinear effects, the initial-value problem is examined for finite-amplitude 
disturbances governed by the nonlinear equations (11)-(13). Here we find that a 
more convenient velocity scale with which to non-dimensionalize is U,, the terminal 
free-fall velocity of a particle, where U, = U, €0". After non-dimensionalizing with U,, 
(1 1)-( 13) become 

E U + ( l - E )  V =  Bo, (47 a )  

where B(E)  = (1 - E ) / E n ,  P = q / g h  and R = ps U,h/&, and again we have 
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FIGURE 2(a-e). For caption see facing page. 
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FIGURE 2. Voidage perturbation Eagainst x up t o j  = 24 when: (a) eo = 0.3, F = 0.005, R = 1.0, 
& = 0.05, n = 3; (6) eo = 0.4, F = 0.005, R = 0.25, pS = 0.05, n = 3;  (c) eo = 0.4, F = 0.04, R = 1.0, 
P, = 0.05, n = 3; (d) e0 = 0.4, F = 0.005, R = 1.0, Po = 0.05, TZ = 3. 

P = Fe;2n < 1. The initial conditions are given by (14) and (15), and far away from 
the disturbance we have E+eo,  V+O and U + @ .  Also since 0 < E < 1 for all times, 
the initial amplitude must satisfy a < 1 -e0. A further restriction a 2 0 is made as 
we are interested in the propagation of high-voidage regions only, although cases for 
which a < 0 can be studied in a similar manner. &fo is the total volume flow, and, 
applying the conditions far away from the disturbance, we find iflo = e;+l. 

Using (47a), we eliminate Ufrom (47c), which becomes, after substitution for &E), 

Equations (47 b )  and (48) are two equations for E and V .  We now obtain a single 
equation for the voidage E by neglecting terms O(P). Since E 1, (48) gives 

V = x f o - E n + l + O ( P ) .  (49) 

v =  &fo-~n+i+P4(~,~5,~E,~Z,,&fo)+~(~), (50) 

V is now replaced in (48) by (49) in all but leading-order terms, which leads to 

aE 
ax 

where 
4 = (n + 1 )  Pn+l {;+ (&fo- En+l + e((1 - E )  (n+ 1) En)-l- 

Substituting (50) for V into (47b), we have on re-arrangement 

and to leading order 

(52) 
a a 
at ax 
- x -{iflo + (n+ 1 )  En - ( n + 2 )  P+'}-. 

Equation (52)  is now used to replace a/a t  in 4. Finally, substitution of 4 into (51) 
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FIGURE 3. A graph of $(E) against E. 

and neglecting terms of O(F2)  leads to a single equation for voidage, namely 

aE 
- + C ( E ) -  = 
at (53) 

where 
C(E)  = B O + ( n + l ) E n - ( n + 2 ) E n + l ,  (54) 

@ ( E )  = E n + 1 { e - ( n + 1 ) 2  ( 1 - E ) 2  E2n} = En+l$(E), (55)  

y ( E )  = Bo- En*’. (56) 

The left-hand side represents nonlinear convection, while the O ( P )  terms on the 
right-hand side represent nonlinear diffusion and dispersion, although the effect of 
dispersionisexpected to beweakforR = O(lO).Toleadingorder, weexpectpropagation 
determined by the left-hand side, the right-hand side being negligible except in 
regions where a2E/ax2 is O(F-l) .  In such regions we expect ‘local diffusion’ if 
@(E)  > 0, but ‘local concentrating’ of voidage if @(E)  < 0. Examination of $(E) for 
0 < E < 1 shows it to have one minimum a t  E = n(n+ l ) - l  and two roots at  EL and 
Eu provided that 0 < 8 < (n (n+  1))2n, which is expected physically. This can be seen 
in figure 3,  where $(E)  is plotted against E for 0 < E < 1 .  Thus it is immediately 
clear that the exponential growth of a disturbance made to an unstable uniform state 
(i.e. EL < e0 < Eu), as predicted by the linearized theory, is curbed by the nonlinearity 
of the diffusion coefficient @(E)  in (53), owing to the change in sign at Eu and EL. 
It should also be noted, for alternative choices of P,(E), that @(E)  always has at most 
two zeros, provided only that P,(E) is a monotonically decreasing function of E and 
that P,(E)+O as E - t l .  

The solution of the initial-value problem is now determined using equations (53), 
(50) and (47a) for E ,  Vend Urespectively. In deriving these equations, we notice that, 
as with the linearized problem, a time derivative has been lost, namely aV/at ,  
enabling only one of the initial conditions (14) and (15)  to be satisfied. Consequently, 
as with the linearized problem, an inner region of the same time scaling must be 
considered first to determine the appropriate initial condition to be applied to the 
outer equations (53), (50) and (47a). Solution of the inner problem determines the 
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inner expansions, in terms of the inner variable t, as 

Edz, t) = eo+ag(4+O(f ; i ) ,  

x (1  -exp{-t(Eo+ag(z))-(n+l)})) (eO+ag(z))-l + O ( E ) ,  

showing that the appropriate initial condition for E to be applied to (53) is 
E(z, 0) = eo + +(s). First we solve the leading-order problem, neglecting terms on the 
right-hand side of (53). The problem then reduces to solving the equation 

aE aE 
-+C(E)- = 0 
at ax (57) 

subject to the initial condition (14), where g(z) is taken as a ‘single hump’. This is 
done, following Whitham (1974)’ using the method of characteristics. The solution 

(58) 
is given implicitly by 

E = e o + a g ( s )  

(59) 
on the curves 

z(t) = C(e0 + ag(s) )  t + s 
for all real values of the parameter s. Before proceeding to discuss the solution in 
detail, i t  is instructive to consider the functional form of C(E). By considering dC/dE 
and d2C/dE2 for 0 < E < 1, C is found to have just one maximum at E = n(n + 2)-l; 
and a point of inflexion or local minimum at E = 0, according to whether n is odd 
or even. C(E) is shown graphically in figure 4. Three distinct cases immediately arise, 
on examining the characteristic curves given by (59). First, if eo+a  < n(n+ 2)-l, then 
C(E) is a monotonically increasing function for eo < E < e0 + a, so the higher values 
of E propagate with faster speeds, causing the ‘single hump’ to break a t  the front 
and become multivalued after a certain time. On the other hand, if eo > n(n+2)-’, 
then eo+a  > n(n+2)-l, and C(E) is a monotonically decreasing function of E for 
e,, < E < eo + a ;  therefore lower values of E propagate with higher speeds, causing 
the ‘single hump ’ to break a t  the back. The third case occurs when eo < n(n + 2)-l 
and eo +a > n(n + 2)-l; since C(E) has a local maximum at E = n(n + 2)-l, then after 
a certain time the ‘single hump’ becomes multivalued a t  both ‘back’ and ‘front’. 

When the solution becomes multivalued, we infer that some assumption in the 
derivation of (57) has been violated (namely the neglect of higher-order terms on the 
right-hand side of (53)). 

To proceed further we must allow discontinuous solutions (the structures of which 
will be examined later) as follows. Equation (57) comes directly from the particle-phase 
continuity equation (46), which is a statement of conservation of mass in the particle 
phase, assuming the continuity and differentiability of V(z ,  t )  and E(x, t). Relaxing 
the assumption of differentiability, the conservation law may be stated in integral 
form as 

- ~ ~ ~ ~ E ( z , t ) d z + [ ( l - E )  VJz; = 0. (60) 

With V given by the lower-order approximation (49)’ we now follow Whitham (1974) 
in replacing multivalued solutions of (57) by the appropriate discontinuous solutions 
of (60). Whitham shows that this is equivalent to fitting a discontinuity into the 
multivalued solution of (60) which satisfies the two conditions that the discontinuity 
must remove the multivalued regions and that the areas under the discontinuous 
curve and the multivalued curve must be equal. 
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FIGURE 4. A graph of C(E)  against E .  

We have shown so far that continuous ‘single-hump’ initial conditions will always 
become discontinuous in finite time, either at front, back, or both, depending upon 
the uniform voidage e0 and the amplitude a of the initial disturbance. The solution 
is now found in more detail. To fix things, g(z) is taken as 

1-z2 (1x1 d l ) ,  

0 (elsewhere), 

although i t  is shown later that the asymptotic behaviour as t + co is dependent only 
W 

upon the value of g(z)dx when g(z) is a single hump. Using (58) and (59), the 
. .- 

solution is 

on the curves 
C(so+a(l-s2))t+s (Is1 d l), 

(n+1)Et(l-E0)t+s (Is1 > 1). 
x(s , t )  = 

The solution defined by (60) and (61) first becomes multivalued a t  a time t, given 
by 

On examining C(f(s))’ we find that t, > 0 for all 0 < E,, < 1 and a > 0. Further 
examination of the characteristic S, on which breakdown first occurs confirms the 
three cases previously mentioned. These cases are now considered in turn. 

tB1 = -{C(f( s ) ) ~ ~ ~ ;  --OO < s < a}, wheref(s) = E,,+a(l-s2). 

(i) E,, + a d n(n + 2)-l 

The solution given by (61) becomes multivalued for t > t,. To obtain an expression 
for t, explicitly involves solving a fourth-order polynomial, which has to be done 
numerically, although we can find an upper bound, which is given by 

0 < t, < {2a(n+ 1) Et-l(n- (n+ 2) c0)}-l 

The compressive region is bounded by the characteristics s = 1 and s = 0, and for 
t > t, a single-valued solution is recovered by fitting a discontinuity at z = Z(t), as 
shown in figure 5 ,  where H ( t )  and h(t)  are the values of E directly behind and ahead 
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'1 
FIGURE 5 ,  The multivalued solution of CW (i). 

of the discontinuity respectively. The discontinuity is fitted such that 

area ( A )  = area (B) .  

s = f { ( s ,+a-E)a - ' }~  

z (E ,  t )  = C(E)  t f { ( E ,  + a - E )  a- '}t 

(62 1 
Returning to (60) and (61) giving E = E(s) on z = z(t,s), inversion of (6la) for 

(63) 

(64) 
(taking the positive or negative sign according to whether s is positive or negative 
on the characteristic in consideration). For characteristics on which s is positive we 
definez(t,E) = z+( t ,E) ,  and,forcharacteristicsonwhichsisnegative,z(t, E )  = x-(t, e ) .  
Using this notation, (62) becomes 

Is1 < 1 gives 

and substitution of (63) into (61 b )  gives 

and from (64) we have 

Z(t) = C ( H ( t ) )  t -{(€,+a-H(t))  a-'}i, 

Z(t) = C(h(t))t+(€,+a-h(t))a-'}t.  

Relations (65)-(67) are three equations for the three unknowns Z(t), h( t ) ,  H ( t ) .  But we 
notice that in this case the discontinuity always moves into the undisturbed region, 
so that h ( t )  = e,, and the characteristics meeting the front of the discontinuity have 
s > 1. Thus we must replace (67) by 

(68) 
Substituting h(t) = E ,  into (65) and (66) gives two equations for H ( t )  and Z(t) ; (68) then 
determines the value of s on the characteristic ahead of the discontinuity. If x+ and 
2- are now substituted from (64) into (65), this on integration, after replacing Z(t) by 
(66), gives a single algebraic equation for H ( t ) ,  namely 

l ( t )  = C(EO) t + s. 

(n+ 1)  Hn+z -{n+ (n+ 2) E,} Hn+l+ (n+ 1) eoHn-e;+l( 1 -6,) 

+ { ( H -  E , )  { (€0  + - H )  + &C +#a{ ( € 0  + a - H )  a-'}j} t-' = 0. (69) 
Equation (69) can be solved asymptotically for large t ;  we find 

H(t )  = " +{3(n+ 1) (n- 8a (n+ 2) E , )  jtt-i+O(t-').  

15 FLM 131 
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Equation (66) is now used to determine Z(t) as t +  CO, namely 
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Z(t) = (n+ 1)  e t (  1 - e,) t + 2et-l{+iz(n + 1)  ( n -  (n + 2 )  e,)}; ti + O(1). (71) 

The solution behind the discontinuity is given by (60) and (61), and takes the 
asymptotic form 

z - e t  ( n  + 1)  (1 - e,) t 
Et-l(n + 1 )  ( n  - ( n  + 2 )  e,) t ( ( n +  1 )  ~ t ( l  -8,) t < z < Z(t)), 

E ( z , t )  = 

E, (elsewhere). 

Equations (69) and (66) have been solved numerically, using Newton's method to 
determine H ( t )  and Z(t) for smaller times. It should be noted that (69) and (66) 
determining H ( t )  and Z(t) are valid only for t 2 t* ,  where t* is the time a t  which 
H ( t )  = e, +a, and is given by 

t* = 2 ~ { t ~ C ( ~ o + a ) -  C(E)dE)-'. J1"'" 
When t B  < t < t* the appropriate equations for H(t)  and l ( t )  are 

(H(t)-e , )  Z(t) = z+(E,  t )  dE, Je: 
Z( t )  = C( H )  t + { ( 8, + a - H )  a- '}i. 

The numerical results are compared with the asymptotic solutions in figure 6, 
discontinuity height H ( t )  being plotted against time t for the case eo = 0.3, a = 0.2 
and n = 3.0. 

(ii) e, 2 n(n + 2)-' 

In  this case the compressive region is a t  the rear of the hump, bounded by the 
characteristics 5 = - I and s = 0. As with (i), the solution becomes multivalued for 
t > tB, where t B  now satisfies the inequality 

0 < tB < ( 2 a ( n + l ) e t - ' ( ( n + 2 ) ~ , - n ) } - ~ .  

Following the methods described in the previous case, we find the asymptotic forms 
for discontinuity height H ( t )  and position Z(t) as t +  co are given by 

8a >:t! + O(t-l), H ( t )  = "'+{3(n+ 1 )  ( (n+2)Eo-n)  

e t ( l - e , ) ( n + l ) t - z  
(Z( t )  < x < ( n + l ) e t ( l - e O ) t ) ,  

E(z , t )  = et- l (n+ 1 )  ((n+ 2)  c,-n) t [ + (elsewhere). 

(iii) E, < n(n+2)- 'and (€,+a) > n(n+2)- l  

For this case a detailed analysis is more complicated, although examination of the 
characteristic curves (61 b )  shows that there are compressive regions a t  both front and 
back. Thus after sufficient time the solution becomes multivalued a t  front and back. 
A single-valued solution is recovered by fitting the two appropriate discontinuities. 
The asymptotic behaviour is of a more complicated nature in this case, although it 
may be shown that eventually the two discontinuities merge at the front, after which 
further development is very similar to that of case (i). 
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FIGURE 6. Graphs of discontinuity height H(t )  against time, as calculated from the numerical 
solution (solid line) and the asymptotic solution (broken line) when E,, = 0.3, a = 0.2 and n = 3.0. 

By considering solutions to the lower-order approximation of (53) for P < 1 ,  we 
have found that finite-amplitude disturbances made to the uniform state develop 
discontinuities, the details of which depend upon eo and hence the flow rate of the 
uniform state, and the amplitude a of the initial disturbance. We expect the 
discontinuities in the lower-order approximation to occur due to the neglect of 
higher-order terms on the right-hand side of (58) in regions of rapid change. The 
structure of the lower-order discontinuities is now examined by introducing higher- 
order derivatives into such regions. By doing this we are able to assess the timescales 
upon which the lower-order approximations are valid. 

6. Discontinuity structure 
The structure of discontinuities arising in the solution of the lower-order approx- 

imation is now examined. We suppose the discontinuity is positioned a t  x = t ( t )  and 
moving with speed U = l ( t ) ;  ahead of the discontinuity E = h(t)  and behind E = H ( t ) .  
The coordinate y is introduced such that the discontinuity is at y = 0. y is defined 

y = x - jtB U(w) dw. 
by t 

In  terms of y and t ,  (53) becomes 

aE 
-+(C(E)-  
at 

Within a region about y = 0, we wish to introduce the higher-order terms on the 
right-hand side of (72) to leading order in P.  To simplify, as a first approximation 
to the structure problem, we assume a % 1 and tentatively neglect the final term on 
the right-hand side of (72). The appropriate stretched variable is then found to be 
Y = yp-', (72) becoming, in terms of Y ,  

15-2 
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Thus, on this scaling, to leading order the structure is quasisteady and is determined 

a by the solution of 
a y I Q ( E ) -  U@ = 

where Q(E)  = JoEC(E) dE and the following conditions must be satisfied: 

E + H ( t )  as Y-t-co, 

E+h(t )  as Y++co. 

Equation (74) can be integrated once to give 

(74) 

(75) 

where A ,  is an arbitrary constant. We now consider in detail the existence of 
quasisteady structures for discontinuities arising in case (i) of the lower-order 
approximation. Thus we have h(t)  = e0 and H(t)  < €,+a < n(n+2)-'. Applying (75)  
gives 

We notice that the relation for U in (77) agrees with the discontinuity speed t ( t )  
for the lower-order approximation. We proceed to examine the right-hand side of (76) 
for E ,  < E < s,+a. First consider a such that €,+a < EL (EL is the smaller of the 
two roots of q? for 0 < E < l) ,  then $(E)  is positive for E ,  < E < €,+a. The 
numerator of G ,  N ( E )  = Q(E)  - UE + A,, has roots at eo and e0 + a, and stationary 

(78) 
points when 

But we also have the compatibility condition 

(79) 

W ( E )  C ( E ) -  U = 0 .  

C(H(t ) )  > u > C(EO), 

which must be satisfied for a discontinuity to exist in the lower-order approximation. 
Equation (78) and the inequality (79) show that N ( E )  has at least one stationary point 
for E ,  < E < H(t) ,  but, since C(E)  is a monotonically increasing function on this range, 
then N ( E )  has just one stationary point. Using (78) and (79) we have also that 
W(E,)  < 0. Together these results show that G(E) < 0 for eo < E < H(t) .  Thus, under 
these conditions, it is possible to fit a smooth, monotonic, integral curve of (76) 
satisfying the two end conditions (75). 

We now examine discontinuities for which EL < H(t)  < n(n+2)- l .  As before, the 
numerator N ( E )  is always negative on the range E ,  < E < H(t) ,  but $(EL) = 0; thus 
G(E) has a singularity at EL. Clearly in this case there is no single-valued integral 
curve of (76) satisfying end conditions (75), and thus a quasisteady structure for such 
discontinuities is not possible. 

Similarly, for discontinuities occurring in case (ii) of the lower-order problem, we 
find that a smooth monotonic integral curve of (76) satisfying the appropriate end 
conditions can be found only when E ,  > Eu (which implies E ,  +a > Eu as we are taking 
a > 0). For case (iii), since we expect EL < n(n+ 2)- l ,  G(E)  always has a singularity 
over the range considered, and again no quasisteady structure can be found. 

Thus we find, when a % 1 ,  that discontinuities arising in the solution of the 
lower-order problem can be smoothed out by considering higher-order terms over a 



Propagation of a voidage disturbance in a Jluidized bed 447 

region of thickness O ( P )  provided that one of two conditions is satisfied by the initial 
amplitude and uniform voidage, namely 

e , + a < E L  or e,>Eu.  (80) 

That is, the uniform state must be stable according to the linearized theory, and 
the initial amplitude of the disturbance not between or on the critical values EL and 
Eu. When this is so, we expect the solution of the lower-order approximation, 
augmented by the structure when y is O(&, to give a valid approximation to the full 
solution of (58). For small times, the term PaE/at in (73) must be included to leading 
order in the transition period when the steepening of the initial disturbance due to 
nonlinear convection becomes balanced by diffusion, resulting in the quasi-steady 
structure when t = O(1).  

It should be noted at this stage that, for beds in which $(E)  > 0 for all 0 < E < 1 
(i.e. 8 > { (1 -E)2E2n(n+  l)2}ma,., and are thus stable according to the linearized 
theory a t  all flow rates), the roots EL and P are complex, and the structure for the 
lower-order discontinuities can be found for all E, and €,+a. For such beds the 
lower-order solution augmented by the structure gives a valid approximation for all 
finite-amplitude disturbances made to uniform states at any flow rate. Since this is 
rare in most gas-fluidized beds, we now restrict attention to beds for which 
8 < { (1-E)2E2n(n+1)2} ,a ,  and hence 0 < EL < Eu < 1 .  

If neither of the conditions (80) is satisfied we have shown that it is not possible 
to smooth out lower-order discontinuities by introducing a quasisteady structure 
satisfying (76). This is due to a singularity in the structure equation (76) at the critical 
values EL and Eu. The singularity arises since we have neglected the term 
(a/%) (En+l/8a2y/ay2) in deriving the structure equation (76) on the approximation 

1 .  This is now seen to be a valid approximation provided that E nowhere lies 
in the neighbourhood of, or between, the critical values EL and Eu. This becomes 
immediately clear on examining the full equation (72). When E lies away from EL 
or P, then the structure is found by a balance between the left-hand side and the 
first term on the right-hand side of (72) for $- 1 ,  but, if E lies close to EL or Eu in 
any neighbourhood throughout the structure, then, no matter how large 8, there is 
always a region about the critical point in which the balance determining the 
structure ‘switches’ to a balance between the left-hand side and the final term on 
the right-hand side, since in this region $(E)  becomes arbitrarily small. 

It now remains to determine the behaviour of the bed when the flow rate is such 
that the uniform state is unstable, that  is EL < eo < Eu, and to determine the 
behaviour of finite-amplitude disturbances made to a stable uniform state, when the 
initial amplitude e, + a approaches one of the critical values EL or Eu. 

We consider a simpler problem which enables the second question to be answered 
and indicates the behaviour sought in the first. Attention is limited to the propagation 
of a plane voidage front governed by (53) subject to the step initial conditions 

which can be related to the physically definable problem of increasing the flow rate 
of an initially uniformly fluidized bed. We restrict eo < EL, so that the uniform state 
is stable according to the linearized theory (the case 6, > Eu could also be considered 
in a similar manner), and consider the behaviour as the initial ‘amplitude’ €,+a 
approaches and passes through the critical point EL. The solution of the lower-order 
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problem, subject to initial conditions (81), is readily given by 
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€,+a ( x  < Ut) ,  E ( x ,  t )  = 

where U = {&(so + a) - &(so)} awl.  This is just a discontinuity propagating vertically 
upwards with speed U ,  ahead of which E = eo, while behind E = €,+a. As before, 
we expect the higher-order terms on the right-hand side of (53) to be significant in 
a region close to the discontinuity. To determine the effect of these terms and the 
lengthscale of the region over which they are important for times of O( l) ,  we introduce 
the coordinate y = x -  Ut and examine quasisteady solutions of (53) that satisfy the 
end conditions E+e,+a as y+--00 and E-ts, as y+m.  Introducing y into (53) 
shows, after integration and rearrangement, that quasisteady solutions must satisfy 
the equation 

= 0, (83) 
Bd2E+ np( 7'- pR$(E) dE &&(E)-UE-AoI 

(n + 1) E2*+' -+ 
where A, = &(so) -{&(so +a) - &(so)} We proceed by studying the behaviour 
of solutions of (83) in the phase plane. Introducing w = dE/dy, (83) is rewritten as 
a pair of first-order equations 

dE 

dy2 E dy (n+l )EZn+ldy  

] (84) 
- w = Cl(E, w ) ,  _-  

dY 

dw &(E)w nw2 E{&(E)-UE-A,} - 

dy (n+ 1 )  E2n+1 E P(n+ 1 )  E2"+l 
= G2(E, w) .  - - _  

The equilibrium points, which are solutions of Gl(E, w)  = Gz(E, w) = 0, are a t  
E = s O  and w = O ;  E=s,+a and w = O  and E=6(so,a),  w = O ,  where 
~(s , ,  a) > so + a > 6,. We are concerned with paths in phase space ( E ,  w) starting a t  
(s,+a,O) and terminating at (so, 0). To examine the existence and behaviour of such 
paths, the equilibrium points are firstly classified by their linearized approximations. 
The equilibrium point (so, 0) is found to be a saddle point, and in the neighbourhood 
of this point the appropriate behaviour is given by 

where B, is an arbitrary constant and $, = @(so), C, = C(eO). In the neighbourhood 
of the equilibrium point (so + a, 0) ,  we find 

E - (s,+a)+A,e~lv+A,e.\aY, 

Al ,A2 are arbitrary constants, $, = @(€,+a) and C, = C(sO+a) .  Thus, from (87), 
the equilibrium point (so +a, 0) is a node provided that 

> 1. @: pll 
4(n+ 1)  (e0+a)2n+1(C,-U) 

Otherwise it is a spiral, becoming a centre when @, = 0. Fixing so < EL and con- 
sidering a in the range c0 < €,+a < EL,  we find that there is always a neighbour- 
hood about eo, such that, when eo+a lies in this neighbourhood, the inequality (88) 
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is satisfied. When this is so, the equilibrium point (e, +a, 0 )  is a node, and by using 
the method of isoclines we find there is a path in phase space between the equilibrium 
points (E, + a,  0) and (E,, 0). In this case the transition from E = eo ahead to E = e, + a 
behind is monotonic. 

Increasing a further, since If/,+O as e,,+a+EL, we find there is always a 
neighbourhood about EL in which the inequality (88) is violated and the equilibrium 
point (e,+a,O) becomes a spiral point, paths spiralling out from ( e O + a , O )  in a 
clockwise sense. Again a path between the two equilibrium points exists. In this case 
oscillations appear on the downward side which are damped out as y+--oo, E 
approaching the constant value €,+a, while ahead, as before, E approaches the 
constant value e, monotonically, as given by (85). We now use (85)-(87) to estimate 
the lengthscales over which E + E ,  and E+ E ,  + a ahead and behind, respectively, 
when P < 1.  When 2 is 0 ( 1 ) ,  the lengthscale over which E+e, ahead is O ( P k / R ) ,  
while behind the oscillations are damped out on a lengthscale O(l/&ba). 

More generally, for larger Reynolds numbers, when 3 is O(P-8) with 6 2 1, the 
lengthscale over which E+e, is O ( P ) ,  and the lengthscale over which the oscillations 
are damped out is now O(P/qka) .  Thus, for €,+a < EL, as a is increased, the 
lengthscale over which the oscillations are damped also increases, since @,-to as 
e0 + a+ EL. Finally, when E, + a = EL, the equilibrium point (8, + a, 0) becomes a 
centre, and with further increase in a becomes a spiral, with paths spiralling towards 
(eO + a,  0) in a clockwise sense. Under these conditions a simple application of the Hopf 
bifurcation theorem shows that a limit cycle bifurcates from the equilibrium point 
(e, + a, 0) as it passes through EL. The path from (e,, 0)  will not now reach (6, +a, O ) ,  
but wind around the limit cycle; thus the oscillations will no longer be damped out, 
but persist as y + - co . 

Interpreting these results with regard to turning up the volume flow of a uniformly 
fluidized bed, suggests that for sufficiently small increases a plane front propagates 
upwards through the bed, separating the two regions of uniform voidage by a thin 
monotonic transition region. For larger increases, as e, + a + EL, oscillations appear 
behind the transition region, which are damped out on a lengthscale O(l/&ha). As 
€,+a passes through EL (em passes through zero), the oscillations are no longer 
damped and the state behind the transition region becomes oscillatory. This suggests 
that, when the uniform state is unstable according to the linearized theory, there is 
another, quasisteady, oscillatory state which the bed assumes. This is suggestive of 
a transition to slug flow, which appears as a quasisteady periodic state of the system, 
and shows great stability. The existence and temporal stability of a quasisteady 
periodic state of the full nonlinear equations (46) and (48) when the flow rate is such 
that the uniform state is unstable, is being considered by the authors at present. 

To confirm these results, (84) were integrated numerically using a Runge- 
Kutta-Merson method. The initial conditions were taken close to the equilibrium 
point (eo ,O) ,  and determined by (85). The integrations were performed in both 
directions to ensure both end points were reached. In all cases shown, 8 was taken 
as 0.1, eo = 0.3, P = 0.05, a = 10 and n = 3. Three cases with a = 0.05, 0.1 and 0.2 
are shown in figures 7 (a ,  b, c ) ,  dE/dY being plotted against E. 

7. Numerical solution of the nonlinear equations 
Finally, the full nonlinear equations (46) and (48) were solved numerically for E 

and t7, with step initial conditions. An implicit Crank-Nicolson finite-difference 
scheme was used, the resulting nonlinear algebraic difference equations being solved 
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by iteration using the Newton-Raphson method. To smooth out the initial dis- 
continuity, the initial conditions were taken as 

€0 (z > I ) ,  
€o+acos2~7cz (0 < z < l ) ,  
€,+a (z < O),  

F,o = 0. 
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FIGURE 7. Graphs of dE/dY against E when: (a) eo = 0.3, P = 0.05, 8 = 0.1, a = 10.0, a = 0.05; 

a = 0.2. 
(b )  eo=0.3,  P=O.O5, e=O.l, 8 = l O . O ,  a=0.1;  (c) eo=O.3 ,  P=O.O5, e=O.l, 8 = l O . O ,  

e0 was fixed at 0.3, Po at 0.08, which gives EL = 0.53 and P = 0.91, and a was 
considered in the range E ,  < €,+a < EL. The results compared well with the 
qualitative behaviour predicted using the approximate governing equation (53). The 
initial voidage distribution went through a transition period, and reached a quasisteady 
state when t z 20. For fixed Pand l? and sufficiently small a, the quasisteady transition 
from €,+a behind to eo ahead was monotonic, while on increasing a, as €,+a 
approached EL, oscillations appeared behind as E+e0 + a. When oscillations were 
present, the lengthscale over which they decayed decreased with increasing for fixed 
a, while for fixed a it increased with increasing a. The wavelength of the oscillations 
decreased with increasing a and increased with increasing P for fixed a. Three cases 
are shown in figures 8 (a-c) in which a and P were fixed and a increased. Each case 
was stepped forward in time until a quasisteady state was reached, the initial and 
final states being shown. With a = 0.05 the transition is monotonic, while for 
a = 0.1,0.2, oscillations appear behind the transition region. 

8. Conclusions 
By considering the evolution of a localized voidage disturbance imposed on an 

otherwise uniformly fluidized bed for which F 4 1 (i.e. @ 4 gh) we have been able 
to determine the dominant effects of the many terms in the continuum equations of 
motion governing such a fluidized bed. 

For small perturbations the equations of motion were linearized, and by considering 
the solution of the initial-value problem as a parameter expansion in powers of P, 
a uniformly valid leading-order approximation was found to be governed by the 
equation 
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From this equation the stability condition > 0 was found to depend upon both 
flow rate of the uniform state and the effect of particle-phase collisional pressure, and 
for < 0 the instability was shown to arise through a ‘focusing’ of voidage due to 
the negative diffusion coefficient, while the effect of particle-phase viscosity is 
dispersive. Further, the evolution was found to take place on three timescales. When 
t is O(F)  there is rapid adjustment in particle and fluid velocities, which propagate 
vertically upwards through the bed when t is O ( l ) ,  the effects of diffusion and 
dispersion being felt when t is O(F-l ) .  When the uniform state is stable, the initial 
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disturbance was shown to develop into a decaying pulse followed by a decaying 
wavetrain. 

For finite-amplitude disturbances, nonlinear effects were considered. The lower- 
order approximation, discussed for single-hump initial conditions, gave rise to 
voidage discontinuities after a finite time, at the front, rear or both depending upon 
the flow rate of the uniform state and the amplitude of the initial disturbance. 
Higher-order effects were then considered through an approximate equation for 
voidage, derived by neglecting terms O ( p ) .  It was found that discontinuities arising 
in the lower-order approximation could be smoothed out by considering higher-order 
terms only for flow rates at  which the uniform state is stable (stable on the linearized 
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theory), and provided that the initial amplitude eo + a was less than the lower critical 
value EL if e0 < EL, or greater than the upper critical value Eu, if e0 > Eu. 

Finally, a detailed study of how the discontinuity structure behaves as eo + a + EL, 
and ‘breaks down ’ as E~ +a passes through EL, indicates that, at flow rates for which 
the uniform state is unstable, the bed may restabilize at a quasisteady periodic state. 
This possibility is being pursued by the authors at present. 
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preparation of this paper. One of the authors (D. J.N.) was in receipt of a S.E.R.C. 
Engineering Mathematics Research Studentship. 

We would also like to thank the referees for their useful and interesting comments, 
which we hope have led to an overall improvement in the paper. 

REFERENCES 

ANDERSON, T. B. & JACKSON, R. 1967 Ind. Engng Chem. Fund. 6,527. 
ANDERSON, T. B. & JACKSON, R. 1968 Ind. Engng Chem. Fund. 7, 12. 
DREW, D. A. & SEQAL, L. A. 1971 Stud. Appl. Mdhs  50, 205. 
FANUCCI, J. B., NESS, N. & YEN, R. 1979 J .  Fluid Mech. 94, 353. 
GARQ, S. K. & F’RITCHETT, J. W. 1975 J .  Appl. Phys. 46, 4493. 
HOMSY, G. M., EL-KAISSEY, M. M. & DIDWANIA, A. 1980 Int. J .  Multiphase Flow 6, 305. 
MURRAY, J. D. 1965 J .  Fluid Mech. 21, 465. 
NAYFEH, A. H. 1973 Perturbation Methods. Wiley-Interscience. 
RICHARDSON, J. F. 1971 In Fluidization (ed. J. F. Davidson & D. Harrison). Academic. 
SAFFMAN, P. G. 1973 Stud. Appl. M a t h  15, 115. 
WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience. 
ZENZ, F. A. 1971 In Fluidization (ed. J. F. Davidson & D. Harrison). Academic. 
ZENZ, F. A. & OTHMER, D. F. 1960 Fluidization and Fluid-Particle Systems. Reinhold. 


